Module and Comodule Structures on Path Space

نویسندگان

  • Lili Chen
  • Chao Yuan
چکیده

On path space kQ, there is a trivial kQ-module structure determined by the multiplication of path algebra kQ and a trivial kQ-comodule structure determined by the comultiplication of path coalgebra kQ. In this paper, on path space kQ, a nontrivial kQ-module structure is defined, and it is proved that this nontrivial left kQ-module structure is isomorphic to the dual module structure of trivial right kQ-comodule. Dually, on path space kQ, a nontrivial kQ-comodule structure is defined, and it is proved that this nontrivial right kQ-comodule structure is isomorphic to the dual comodule structure of trivial left kQ-module. Finally, the trivial and nontrivial module structures on path space are compared from the aspect of submodule, and the trivial and nontrivial comodule structures on path space are compared from the aspect of subcomodule. Keywords—Quiver, path space, module, comodule, dual.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

Algebraic Aspects of the Quantum Yang–Baxter Equation

In this paper we examine a variety of algebraic contexts in which the quantum Yang–Baxter equation arises, and derive methods for generating new solutions from given ones. The solutions we describe are encoded in objects which have a module and a comodule structure over a bialgebra. Our work here is based in part on the ideas of [DR1, DR2]. Suppose that R : M ⊗M −→ M ⊗M is a solution to the qua...

متن کامل

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

Cohomology and Deformation of Module-algebras

An algebraic deformation theory of module-algebras over a bialgebra is constructed. The cases of module-coalgebras, comodule-algebras, and comodule-coalgebras are also considered.

متن کامل

Doi-Koppinen Hopf Modules Versus Entwined Modules

A Hopf module is an A-module for an algebra A as well as a C-comodule for a coalgebra C, satisfying a suitable compatibility condition between the module and comodule structures. To formulate the compatibility condition one needs some kind of interaction between A and C. The most classical case arises when A = C =: H is a bialgebra. Many subsequent variants of this were unified independently by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016